Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 84(3): 481-490, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31690227

RESUMO

ChlR is a MarR-type transcriptional regulator that activates the transcription of the chlAII-ho2-hemN operon in response to low oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803. Upon exposure to low oxygen conditions, ChlR activates transcription of the operon that encodes enzymes critical to tetrapyrrole biosynthesis under low oxygen conditions. We previously identified a super-activator variant, D35H, of ChlR that constitutively activates transcription of the operon. To gain insight into the low-oxygen induced activation of ChlR, we obtained eight additional super-activator variants of ChlR including D35H from pseudorevertants of a chlAI-disrupted mutant. Most substitutions were located in the N-terminal region of ChlR. Mapping of the substituted amino acid residues provided valuable structural insights that uncovered the activation mechanism of ChlR.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Oxigênio/metabolismo , Tetrapirróis/biossíntese , Fatores de Transcrição/metabolismo , Aerobiose , Proteínas de Bactérias/química , Cianobactérias/crescimento & desenvolvimento , Fatores de Transcrição/química
2.
Plant Cell Physiol ; 56(2): 334-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416288

RESUMO

Although cyanobacteria are photoautotrophs, they have the capability for heterotrophic metabolism that enables them to survive in their natural habitat. However, cyanobacterial species that grow heterotrophically in the dark are rare. It remains largely unknown how cyanobacteria regulate heterotrophic activity. The cyanobacterium Leptolyngbya boryana grows heterotrophically with glucose in the dark. A dark-adapted variant dg5 isolated from the wild type (WT) exhibits enhanced heterotrophic growth in the dark. We sequenced the genomes of dg5 and the WT to identify the mutation(s) of dg5. The WT genome consists of a circular chromosome (6,176,364 bp), a circular plasmid pLBA (77,793 bp) and two linear plasmids pLBX (504,942 bp) and pLBY (44,369 bp). Genome comparison revealed three mutation sites. Phenotype analysis of mutants isolated from the WT by introducing these mutations individually revealed that the relevant mutation is a single adenine insertion causing a frameshift of cytM encoding Cyt c(M). The respiratory oxygen consumption of the cytM-lacking mutant grown in the dark was significantly higher than that of the WT. We isolated a cytM-lacking mutant, ΔcytM, from another cyanobacterium Synechocystis sp. PCC 6803, and ΔcytM grew in the dark with a doubling time of 33 h in contrast to no growth of the WT. The respiratory oxygen consumption of ΔcytM grown in the dark was about 2-fold higher than that of the WT. These results suggest a suppressive role(s) for Cyt cM in regulation of heterotrophic activity.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/genética , Citocromos c/genética , Escuridão , Processos Heterotróficos/genética , Mutação/genética , Sequência de Bases , Rearranjo Gênico , Genoma Bacteriano , Fenótipo , Filogenia , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo , Transformação Genética
3.
J Biol Chem ; 289(3): 1841-51, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297184

RESUMO

ChlR activates the transcription of the chlAII-ho2-hemN operon in response to low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803. Three genes in the operon encode low-oxygen-type enzymes to bypass three oxygen-dependent reactions in tetrapyrrole biosynthesis. A chlR-lacking mutant, ΔchlR, shows poor photoautotrophic growth due to low chlorophyll (Chl) content under low-oxygen conditions, which is caused by no induction of the operon. Here, we characterized the processes of etiolation of ΔchlR cells in low-oxygen conditions and the subsequent regreening of the etiolated cells upon exposure to oxygen, by HPLC, Western blotting, and low-temperature fluorescence spectra. The Chl content of the etiolated ΔchlR cells incubated under low-oxygen conditions for 7 days was only 10% of that of the wild-type with accumulation of almost all intermediates of the magnesium branch of Chl biosynthesis. Both photosystem I (PSI) and photosystem II (PSII) were significantly decreased, accompanied by a preferential decrease of antenna Chl in PSI. Upon exposure to oxygen, the etiolated ΔchlR cells resumed to produce Chl after a short lag (∼2 h), and the level at 72 h was 80% of that of the wild-type. During this novel "oxygen-induced" greening process, the PSI and PSII contents were largely increased in parallel with the increase in Chl contents. After 72 h, the PSI content reached ∼50% of the wild-type level in contrast to the full recovery of PSII. ΔchlR provides a promising alternative system to investigate the biogenesis of PSI and PSII.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias , Clorofila/biossíntese , Mutação , Oxigênio/metabolismo , Synechocystis/metabolismo , Fatores de Transcrição , Clorofila/genética , Complexo de Proteína do Fotossistema I/biossíntese , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/biossíntese , Complexo de Proteína do Fotossistema II/genética , Synechocystis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...